If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+84x-15=0
a = 12; b = 84; c = -15;
Δ = b2-4ac
Δ = 842-4·12·(-15)
Δ = 7776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7776}=\sqrt{1296*6}=\sqrt{1296}*\sqrt{6}=36\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-36\sqrt{6}}{2*12}=\frac{-84-36\sqrt{6}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+36\sqrt{6}}{2*12}=\frac{-84+36\sqrt{6}}{24} $
| -7-7a=2(1+a) | | −21=n−8 | | 7x+13=23-3x | | 8^-x+2=16 | | 7x−19=-5 | | 14x-(25x-18)=34x-30)+18 | | 3v+4=180 | | 2x+33=13x | | 8n-4+4n=7n+6 | | 2.08/8=d/16 | | |v+4|=10 | | 2=2/3x-16 | | 5-3(x+7)=10 | | 8v-6=180 | | 12=d/4+14 | | 68=x÷5+46 | | 13+m=2(-4+m | | 6n+8=2n=36 | | 15-(9+10b)+20b-4=22 | | 7y+5=9y-3y | | 9-2q=17 | | Y=4,3x+105 | | m/3+6=7 | | 6u-4u-16=4 | | 3m-5=m-3 | | 2/7x+1/6=-5/7x+1/3 | | 3/4w+48=51 | | 4x+15=49 | | 7=p/2+6 | | -3(5k+2)=6(k-10) | | 3=y+4/2 | | 10x+750=1500+x |